Time-Dependent Lagrangian Biomechanics

نویسنده

  • Tijana T. Ivancevic
چکیده

In this paper we present the time-dependent generalization of an ‘ordinary’ autonomous human musculo-skeletal biomechanics. We start with the configuration manifold of human body, given as a set of its all active degrees of freedom (DOF). This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. On this extended configuration space we develop time-dependent biomechanical Lagrangian dynamics, using derived jet spaces of velocities and accelerations, as well as the underlying geometric evolution of the mass-inertia matrix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Symmetries of Equivalent Lagrangian Systems and Constants of Motion

In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to th...

متن کامل

Jet Methods in Time–Dependent Lagrangian Biomechanics

In this paper we propose the time-dependent generalization of an ‘ordinary’ autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configu...

متن کامل

Smooth parametric surfaces retrieval from triangular meshes using RBFs

Quality of physically-based simulation mostly relies upon qualities of the geometrical model of the entities involved. Particularly, Lagrangian formalism (which we focus on since several years) claims for continuous and smooth descriptors. Our current project aims a precise Lagrangian knee kinematics model. The studied knee model has been chosen as built up from actual bones geometries and liga...

متن کامل

Time & Fitness–Dependent Hamiltonian Biomechanics

In this paper we propose the time&fitness-dependent Hamiltonian form of human biomechanics, in which total mechanical + biochemical energy is not conserved. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomechanics. Then we extend it using a powerful geometrical machinery consisting of fibre bundles, jet manifolds, polysymplectic geometry and Hamiltonian connec...

متن کامل

Jet–Ricci Geometry of Time-Dependent Human Biomechanics

We propose the time-dependent generalization of an ‘ordinary’ autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds derived from the extended musculo-skeletal configuration manifold. The corresponding Riemannian geometrical evolution follows the Ricci flow diffusi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009